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Abstract

The self-similar solidification process of an alloy from a cooled boundary is studied on the basis of two models with a planar front and
mushy layer. Approximate and exact analytical solutions of the process, which demonstrate unusual dynamics near the point of consti-
tutional supercooling, are found. The rate of solidification and front position of the solid/mush boundary (parabolic growth rate con-
stant) are expressed in an explicit form in the case of slow dynamics of this boundary. The theory under consideration is in a good
agreement with experimental and numerical studies carried out by Huppert and Worster for ice growing from aqueous salt solutions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Some types of instabilities of the phase interface and the
instability of the metastable constitutionally supercooled
binary melt cause a system of elements of the solid phase
in the form of dendrites, cells and others to appear in the
melt. The development of this system reduces the superco-
oling and leads to formation of a new stable solidification
mode characterized by the presence of a mushy layer that
separates the pure solid and melt regions. Heat and mass
transfer in the mushy layer has a major effect on the prop-
erties of the solid materials thus produced, which is also
responsible for the marked interest in the study of solidifi-
cation of binary melts accompanied by formation of the
aforementioned transition layer. Mathematical descrip-
tions of solidification scenario are complicated not only
by nonlinearities of heat and mass transfer equations but
also by the need to apply boundary conditions at solid/li-
quid interfaces which are evolving with time and whose
positions must be determined as a part of the solution. A
full set of thermodynamic equations for a mushy layer is
developed and a much-reduced set of them is solved
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approximately in Ref. [1] for the constrained growth of a
binary alloy. More complete and exact solutions have since
been given in Refs. [2–5]. Constrained growth, in which the
interfaces are supposed to advance at a prescribed constant
velocity, is applicable to industrial crystal pulling (Czo-
chralski growth), but not to the solidification of castings
nor to many natural systems where growth can proceed
at a rate dependent on time and, in particular, at a rate in-
versely proportional to the square root of time [6,7]. The
aim of this paper is to develop the theory where the inter-
faces propagate in this manner.

2. Self-similar solidification with a planar front

We treat a unidirectional solidification of a binary melt
along z-axis from a cooled boundary experimentally and
numerically studied in Refs. [6,7]. Let us consider a semi-
infinite region z > 0 filled with liquid which initially has
uniform composition C = c0 and temperature T1. We tra-
ditionally neglect the solute transport in the solid phase
and, following Ref. [7], ignore the effects of gravity and
imagine that the plane z = 0 forms the lower, horizontal
boundary of the domain. The temperature of the cooled
boundary is maintained at a value T = TB lower than the
initial liquidus temperature. The temperature T and

mailto:Dmitri.Alexandrov@usu.ru


Nomenclature

a solid/mush interface position
b mush/liquid interface position
c0 solute concentration at infinity
C solute concentration
Cpl specific heat of the liquid phase
Cps specific heat of the solid phase
D solute diffusivity
h front position
kl thermal conductivity of the liquid phase
ks thermal conductivity of the solid phase
L latent heat parameter
t time
T temperature

TB temperature at z = 0
T1 temperature at infinity
z spatial coordinate

Greek symbols

C liquidus slope
g self-similar coordinate
k, ka, kb parabolic growth rate constants
ql density of the liquid phase
qs density of the solid phase
u local volume fraction of the solid phase
v local volume fraction of the liquid phase
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concentration C fields in the solid and liquid phases are de-
scribed by the classical heat and mass transfer equations:

qsCps
oT
ot

¼ ks
o
2T
oz2

; 0 < z < hðtÞ; ð1Þ

qlCpl

oT
ot

¼ kl
o
2T
oz2

;
oC
ot

¼ D
o
2C
oz2

; z > hðtÞ; ð2Þ

where z = h(t) is the position of the solidification front; all
of the transfer coefficients are assumed to be constant in
each phase. In the case of unidirectional regime with a pla-
nar front, nothing depends on the spatial coordinate direc-
ted perpendicular to the solidification direction.

The aforementioned boundary conditions can be ex-
pressed in the form

T ¼ T B; z ¼ 0; ð3Þ
C ! c0; T ! T1; z ! 1. ð4Þ

Further, we make the assumption that the front, z = h(t), is
close to equilibrium, that is,

T ðh; tÞ ¼ �CCðhþ; tÞ; z ¼ hðtÞ. ð5Þ
Heat and solute must be conserved at the front

qsL
dh
dt

¼ ks
oT
oz

� �
z¼h�

� kl
oT
oz

� �
z¼hþ

; ð6Þ

Cðhþ; tÞ dh
dt

þ D
oC
oz

� �
z¼hþ

¼ 0. ð7Þ

The aforementioned model (1)–(7) admits a similarity
solution with variable g and interface position h(t) of the
form

g ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt þ s

p ; hðtÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt þ s

p
; ð8Þ

where the parabolic growth rate constant k is to be deter-
mined and s has the meaning h2(0)/k2.

In a similarity solution a similarity variable, combining
the space and time variables, is sought that transforms the
governing partial differential equations into a set of ordin-
ary differential equations with the similarity variable as the
independent variable.

Following the presentation of Ref. [7] and omitting
mathematical manipulations, let us express the solution
of the above model using self-similar variables (8). The re-
sult is

T ðgÞ ¼ T B þ
ðT h � T BÞerfðesgÞ

erfðeskÞ
; g < k; ð9Þ

T ðgÞ ¼ T1 þ ðT h � T1ÞerfcðelgÞ
erfcðelkÞ

; g > k; ð10Þ

CðgÞ ¼ c0 þ
ðCh � c0ÞerfcðgÞ

erfcðkÞ ; g > k; ð11Þ

where es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DCpsqs=ks

p
, el ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DCplql=kl

p
, Th and Ch stand

for the temperature and concentration at the phase transi-
tion boundary g = k. Three unknowns are determined by
the boundary conditions (5)–(7). Substituting distributions
(9)–(11) in conditions (5)–(7), we arrive at

T h ¼ �CCh; Ch � c0 ¼ CfiðkÞ �
c0F ðkÞ
1� F ðkÞ ; ð12Þ

CCfiðkÞ
b

F ðelkÞ
þ 1

GðeskÞ

� �
¼ T 1

GðeskÞ
� bT 0

F ðelkÞ
� L
Cps

; ð13Þ

where

b ¼ qlCpl

qsCps

; F ðxÞ ¼
ffiffiffi
p

p
x expðx2ÞerfcðxÞ;

GðxÞ ¼
ffiffiffi
p

p
x expðx2ÞerfðxÞ.

Eq. (13) determines the parabolic growth rate constant.
The driving temperature differences T1 = �Cc0�TB and
T0 = T1 + Cc0 and graphs of k versus T1, T0 and c0 are
shown in the many figures of Ref. [7].

It is noteworthy that the temperature ahead of the plane
solidification front can fall below the local liquidus temper-
ature. This phenomena is called ‘‘constitutional supercool-
ing’’. The latter arises if the concentration gradient exceeds
the temperature one at the front, i.e.
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oT
oz

� �
z¼hþ

< �C
oC
oz

� �
z¼hþ

. ð14Þ

Now, substituting distributions (10) and (11) in inequality
(14), taking into consideration definition (12), we rewrite
the last condition for the self-similar solidification front

CfiðkÞ > CiðkÞ �
ðT 0=CÞe2l F ðkÞ
F ðelkÞ � e2l F ðkÞ

. ð15Þ

If the left hand side of (15) is equal to the right one, the
last condition determines the onset of supercooling and,
consequently, critical values of thermophysical parameters
that describe the validity of the above solutions for the pla-
nar front. Therefore, if inequality (15) holds true, we shall
use a mushy layer model.

3. Self-similar solidification with a mushy layer

Let us analyze the solidification of a binary melt with a
mushy layer, in which heterogeneous inclusions of the new
phase grow in such a manner that this layer is virtually to-
tally desupercooled. In this case, a mushy layer may be
treated as independent of the precise morphology of the
growing solid phase. The mush is also treated as a contin-
uum, and its physical properties are taken to be functions
of the local volume fraction of solid u. Heat and mass
transfer are described by heat conduction and diffusion
equations in the mushy layer (a(t) and b(t) stand for the
solid/mush and mush/liquid boundaries)

ðqCpÞm
oT
ot

¼ o

oz
km

oT
oz

� �
þ qsL

ou
ot

;

T ¼ �CC; aðtÞ < z < bðtÞ; ð16Þ

v
oC
ot

¼ o

oz
Dv

oC
oz

� �
þ C

ou
ot

;

v ¼ 1� u; aðtÞ < z < bðtÞ; ð17Þ

where the thermal properties (km and (qCp)m) of the mush
are assumed to be volume-fraction-weighted averages of
the properties of the individual phases so that [8]

km ¼ vkl þ ð1� vÞks; ðqCpÞm ¼ vqlCpl þ ð1� vÞqsCps.

Let us especially emphasize that there is no reason for u
to be continuous in the model under consideration [7].

The heat and mass flux conditions imposed at the two
interfaces have the form

qsLva
da
dt

¼ ks
oT
oz

� �
z¼a�

� km
oT
oz

� �
z¼aþ

;

Cava
da
dt

¼ �Dva
oC
oz

� �
z¼aþ

;

qsLð1� vbÞ
db
dt

¼ km
oT
oz

� �
z¼b�

� kl
oT
oz

� �
z¼bþ

;

Cbð1� vbÞ
db
dt

¼ Dvb
oC
oz

� �
z¼b�

� D
oC
oz

� �
z¼bþ

. ð18Þ
As is shown in Ref. [7], the traditional approximation
vb = 1 (ub = 0) is unjustifiable a priori. Further, we have
a condition of marginal equilibrium of the liquid [9]

oT
oz

� �
z¼bþ

¼ �C
oC
oz

� �
z¼bþ

. ð19Þ

The last boundary condition shows that none of the li-
quid region is supersaturated, and it is marginal in the
sense that (19) gives the smallest temperature gradient con-
sistent with complete equilibrium, cf. (14). The possibility
of using a condition of marginal stability is also discussed
in Ref. [7].

The governing equations (16) and (17) supplemented by
the boundary conditions (18) and (19) admit similarity
solutions with the same similarity variable g and interface
positions of the form

aðtÞ ¼ ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt þ s

p
; bðtÞ ¼ kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt þ s

p
; ð20Þ

where ka and kb are parabolic growth rate constants deter-
mined below.

Rewriting the governing equations (16) and (17) and the
boundary conditions (18) and (19) in terms of self-similar
variables (8) and (20), eliminating the temperature field,
we come to the following model

� 2gð1� uÞ dC
dg

¼ � du
dg

dC
dg

þ ð1� uÞ d
2C
dg2

� 2gC
du
dg

;

a ¼ CCps

L
; ka < g < kb; ð21Þ

� 2ae2s bþ ð1� bÞu½ �g dC
dg

¼ ½Kþ ð1� KÞu�a d
2C
dg2

þ að1� KÞ du
dg

dC
dg

þ 2e2sg
du
dg

;

K ¼ kl
ks
; ka < g < kb; ð22Þ

C ¼ c0 þ CiðkbÞ; g ¼ kb; ð23Þ
e2svb
a

þ kmðvbÞ
ks

Cb �
CiðkbÞ
F ðkbÞ

� �
ð1� vbÞ ¼ 0;

g ¼ kb; ð24Þ
dC
dg

¼ �2kb
kl

kmðvbÞ
CiðkbÞ
F ðkbÞ

þ e2s
a

ks
kmðkbÞ

ð1� vbÞ
� �

;

g ¼ kb; ð25Þ

2ka
e2s
a
va �

kmðvaÞ
ks

dC
dg

� �
GðeskaÞ þ 2kae

2
s C þ T B

C

� �
¼ 0;

g ¼ ka; ð26Þ
dC
dg

þ 2kaC
� �

va ¼ 0; g ¼ ka. ð27Þ

The heat and mass transfer equations (21) and (22) with
boundary conditions (23)–(27) form a closed model
describing a mushy layer.
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The boundary condition (23) is analogous to condition
(12). This condition may be easily obtained by means of
expressions (15) and (19). The boundary condition (24) de-
rived in Ref. [7] from a condition of marginal equilibrium
represents a quadratic equation for the liquid fraction vb
at the mush/liquid interface. It is clearly seen that one of
the roots is vb = 1 (the boundary condition traditionally
used by many authors; see, among others, [1,4,5]). How-
ever, it was shown [7] that the other root is

vb ¼ vi �
c0½CiðkbÞ=CfiðkbÞ � 1�
e2s=aþ Cbðkl=ks � 1Þ . ð28Þ

In other words, we choose as our boundary condition
vb = vi if 0 6 vi < 1 and vb = 1 otherwise [7]. The boundary
condition (27) must be treated in the same manner. The
possible changeover of these boundary conditions will also
be discussed subsequently.

4. Approximate solutions

Analytical studies of relationships governing solidifica-
tion in the presence of a non-stationary mushy layer is ex-
tremely complicated. This happens because it is necessary
to investigate the interaction of nonlinear heat and mass
transfer and phase transitions at both interfaces. Therefore,
many of the classical models were analyzed by numerical
methods only, which do not allow establishing clear rela-
tionships between the state variables of the process and
the characteristics of the structure of the mushy region.
This situation stimulates the search of new, unconventional
approaches to solving the solidification problems with a
mushy layer. One of such constructive approaches devel-
oped here is adopted for self-similar solidification scenaria
with a mushy layer. Our approach consists in the following.

Let us seek the solutions of the above model in the form
of series in g

uðgÞ ¼ u0 þ gu1 þ g2u2 þ � � � ;
CðgÞ ¼ C0 þ gC1 þ g2C2 þ g3C3 þ � � � ; ð29Þ

where the coefficients ui and Ci are independent on the self-
similar variable. Substituting expansions (29) into Eqs. (21)
and (22), we find two equations in the zero approximation
in g

u1C1 ¼ 2ð1� u0ÞC2;

2C2 Kþ ð1� KÞu0½ � þ ð1� KÞu1C1 ¼ 0.

The solution of these equations determines coefficients u1

and C2 such that u1 = 0 and C2 = 0. Further, we obtain
the following expressions for first-order terms with respect
to g. In terms of u2 and C3 they are

u2 ¼ ð1� u0Þ Kþ ð1� KÞu0 � e2s ðbþ ð1� bÞu0Þ
� �

;

C3 ¼ L0ðkbÞC1;

L0ðkbÞ ¼ � ð1� KÞð1� u0Þ þ e2s bþ ð1� bÞu0½ �
3

.

ð30Þ
Now, substituting (30) in the boundary condition
uðkbÞ ¼ ub ¼ u0 þ k2bu2, we arrive at a quadratic equation
for u0(kb)

u0ðkbÞ ¼ u�
0 ¼

�b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4a1c1

q
2a1

;

u0ðkbÞ ¼ uþ
0 ¼

�b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4a1c1

q
2a1

; ð31Þ

where

a1ðkbÞ ¼ k2b½1� K� e2s ð1� bÞ�;
b1ðkbÞ ¼ ½2Kk2b � k2b � 1þ e2sk

2
bð1� 2bÞ�;

c1ðkbÞ ¼ ubðkbÞ � k2bðK� e2sbÞ;
ubðkbÞ ¼ 1� vbðkbÞ.

The boundary condition (23) gives

C0ðkbÞ ¼ c0 þ CiðkbÞ � kbC1½1þ k2bL0ðkbÞ�. ð32Þ
The value of C1 is found from the boundary condition (27).
Let va 5 0 then we have from (27)

C1 ¼ � 2ka½c0 þ CiðkbÞ�
1þ 2k2a � 2kakb þ L0ðkbÞ½3k2a þ 2k4a � 2kak

3
b�
. ð33Þ

Substituting the second of expansions (29) into the
boundary condition (25), we express C1 in the form

C1ðkbÞ ¼ H 1ðkbÞ; H 1ðkbÞ ¼ � HðkbÞ
kmðkbÞ½1þ 3k2bL0ðkbÞ�

;

HðkbÞ ¼ 2kb kl
CiðkbÞ
F ðkbÞ

þ e2sks
a

ð1� vbÞ
� �

.

ð34Þ
Combining the above solutions and the boundary condi-
tion (26), we come to the transcendential equation of the
form

2ka
e2s
a
va �

kmðvaÞ
ks

C1 þ 3k2aC3

� 	� �
GðeskaÞ

þ 2kae
2
s C0 þ kaC1 þ k3aC3 þ

T B

C

� �
¼ 0. ð35Þ

The roots of Eqs. (34) and (35) determine the parabolic
growth rate constants ka and kb as functions of all thermo-
physical parameters of the process under consideration.

In the case of ka � kb, it is possible to express ka in an
explicit form. To do it let us equate C1 from (33) and
(34). As a result, we come to a quadratic equation for the
interface position ka, which gives

kaðkbÞ ¼
�r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r1H 1

p
2r1

;

r1ðkbÞ ¼ H 1ðkbÞð2þ 3L0ðkbÞÞ;
r2ðkbÞ ¼ 2½c0 þ CiðkbÞ� � 2H 1ðkbÞkbð1þ k2bL0ðkbÞÞ.

ð36Þ

Our computations show that the solution can be found if
the plus sign is chosen in the above expression. In this case,
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we have only one nonlinear equation (35) for the parabolic
growth rate constant kb.

In the case of ua = 1 (or va = 0) the boundary condition
following from (27) of the form dC/dg + 2kaC = 0 at
g = ka is absent. The coefficients u2, C3, u0, C0 and C1

are determined as before by formulas (30), (31), (32) and
(34) respectively, whereas the parabolic growth rate con-
stant ka is found from condition u0ðkbÞ þ k2au2ðkbÞ ¼ 1.
Thus, if this is really the case, we have

kaðkbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u0ðkbÞ
u2ðkbÞ

s
; ð37Þ

whereas kb is found from (35).
Thus, the approximate solution of the problem under

consideration is described by expressions (24) and (29)–
(37).

We restrict ourselves by the set of thermophysical
parameters given in Table 1. Now we present results for
a solution of sodium nitrate in water, where the concentra-
tion measures the weight per cent of NaNO3. Fig. 1 shows
the parabolic growth rate constants and the volume frac-
tions of solid as functions of T1. It is easy to see that the
approximate solutions are in a good agreement with
numerical and experimental studies of Refs. [6,7]. Fig. 2
demonstrates similar results to those in Fig. 1 in the vicinity
of the critical point. As is seen, in this case, we have so-
called subcritical bifurcation so that equilibrium solutions
Table 1
Parameter values for the set NaNO3 + H2O used in calculations [7]

Property Value Units

C 0.4 �C
L 3.35 · 105 J kg�1

D 10�9 m2 s�1

ks 2.219 J m�1 s�1 �C�1

kl 0.544 J m�1 s�1 �C�1

qs 920 kg m�3

ql 1000 kg m�3

Cps 2.01 · 103 J kg�1 �C�1

Cpl 4.187 · 103 J kg�1 �C�1
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λ
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b
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ϕ
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1TcT

Fig. 1. The dimensionless parabolic growth rate constants k, kb, the
mushy layer thickness Dk = kb � ka and the volume fractions of solid ua

and ub as functions of T1 for the parameter values given in Table 1,
T1 = 15 �C, c0 = 14 (supercooling occurs in the liquid at T1 = 1.776 and
k = kb = 0.154). The circles are data from the experiments of Ref. [6].
for the solidification regime with a mushy layer are existed
for values of T1 less than the critical value for supercooling
calculated by equating both sides of inequality (15) to each
other (supercooling occurs ahead of the planar front if
T1 > Tc = 1.776 and k > 0.154). The solid fraction distrib-
uted within the mushy layer and the scheme of solidifica-
tion are plotted in Figs. 3 and 4. As is demonstrated in
Figs. 1–4, in the vicinity of the critical point, (T1 = Tc,
k = kb), the solid fraction is large throughout the mush
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0.75 1.75
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Fig. 3. Profiles of the volume fraction of solid within the mushy layer
ka < g < kb for different values of T1 (numbers at the curves). Variations of
T1 between 2.14 and 2.16 �C gives different behavior of u(g).
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Fig. 4. Schematic diagram of solidification illustrating different behavior
of the process for various values of T1.



Table 2
Changeover of the boundary conditions for different regimes shown in
Fig. 4

Planar front I (9)–(13)
Planar front or mushy layer II Planar front: same as in region I

Mushy layer: same as in region III
III ub 5 0, ua 5 1, u�

0

Mushy layer IV ub 5 0, ua = 1, uþ
0

V ub = 0, ua = 1, uþ
0
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and, in particular ua, ub and u(g) approach to unity at this
point. This circumstance permits us to suggest the forma-
tion of cells (possibly deep cells) rather than dendrites
and other formations in this case (an example of such a
behavior is illustrated in Fig. 11 of Ref. [7]; see also discus-
sions given by Worster [7]). The subcritical bifurcation
shows that three branches of the solution (one branch of
k with a planar front and two branches of kb with a mush)
may exist in the open interval Tc0 < T1 < Tc (see Figs. 4 and
2). Notice that the curve for ka does not join with the crit-
ical point. Increasing T1 from Tc to Tc1, we see that the vol-
ume fraction ua decreases to 0 at point Tc1 and attains
unity like the step function. This a switch point when the
boundary condition dC/dg + 2kaC = 0 at g = ka must be
replaced by condition va = 0 (see (27)). In a small vicinity
of this point, the system can make no distinction between
two possible regimes with ua 5 1 and ua = 1. In other
words, the system near the critical point Tc1 tends to one
of these solidification scenarios (Figs. 1, 2 and 4). Thereaf-
ter, the volume fraction ub attains its minimal value at
point T1 = Tc2, i.e. ub = 0 for T1 P Tc2 (traditionally used
boundary condition for ub [1,4,5]). As a consequence, in-
stead of the boundary condition vb = vi we have vb = 1 at
g = kb (see (24)). Table 2 shows the detailed boundary con-
ditions applicable for the calculated regions in Fig. 4. This
example demonstrates unconventional behavior of the sys-
tem near the critical points.

5. Exact analytical solutions: deep cells

The main objective of this section is to show how the
deep cells or cracks (ka = 0) in solids can be formed in prin-
ciple due to the influence of constitutional supercooling.
For this purpose, we demonstrate here that the governing
equations for a mush have a particular solution. Let us
consider the case of u(g) ! 1 (du/dg ! 0) within the
mushy layer. Such a situation describes deep cells or cracks
with small cross-sections filled with the liquid [7]. It is easily
seen, that Eq. (21) and the boundary conditions (24), (26)
and (27) are satisfied automatically whereas Eq. (22) leads
to

d2C
dg2

¼ �2e2sg
dC
dg

.

Integration gives

CðgÞ ¼ A
Z g

kb

expð�e2s z
2Þdzþ B. ð38Þ
Thus, the mushy layer model under study can be solved
exactly. Once a crack or deep cell has been formed in the
solid, the process can be described by a mushy layer model.
However, such a layer is far from equilibrium and, conse-
quently, it cannot be described by the equilibrium model
under consideration. At the beginning (as long as the fluid
flowing into a crack), the mushy zone is essentially unstea-
dy state and, therefore, we can apply the boundary condi-
tions (23) and (25) at a later time only. In this case, we
have

A ¼ �2kb expðe2skbÞ
kl
ks

CiðkbÞ
F ðkbÞ

þ ce2s

� �
;

B ¼ c0 þ CiðkbÞ. ð39Þ

It is significant that the parabolic growth rate constant in
Eq. (39) is found from equality Ci(kb) = Cfi(kb) that follows
from Eq. (28). In other words, at the instant the constitu-
tional supercooling occurs (inequality (15) reduces to
equality), the deep cells or cracks in solids can be formed
(this is caused, for example, due to the fact that the ice den-
sity at the phase transition interface increases with decreas-
ing the phase transition temperature and, as a consequence,
mechanical tensions in the solid may appear). Comparing
this result with Fig. 4 we conclude that three different re-
gimes can be realized in the vicinity of the critical point
Tc: planar front and mushy layer with ka 5 0 (formation
of cells, Fig. 4) and ka = 0 (formation of deep cells). In
other words, it is a bifurcation type point. Of course, such
phenomena as natural convection or time variations of
temperature TB must be taken into account in practice
(for example, formation of sea ices occurs upon atmo-
spheric temperature variations and convective motions
[10,11]). Nevertheless, as is shown, one of the possible
mechanisms of this process consists in the role of constitu-
tional supercooling.

6. Concluding remarks

The model equations for a mush in the case of self-sim-
ilar solidification regime are solved approximately by
means of power expansion method. The obtained solu-
tions accurately describe existing experimental observa-
tions and numerical simulations carried out by Huppert
and Worster [6,7]. One particular (exact) solution, which
corresponds to the solidification with deep cells or cracks
forming a mushy layer, is revealed. It was shown that
three different crystallization regimes may exist near the
point of constitutional supercooling (one regime with a
planar front and two mushy layer regimes with rather
shallow and deep cells). Generally speaking, the self-sim-
ilar solidification scenario does not closely correspond to
natural conditions of sea ice formation because the atmo-
spheric temperature at the ice surface is a function of time
(in reality, the natural convection and other processes are
of importance as well) [10,11]. This leads to variations in
temperature TB (e.g., according to experimental data in
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Ref. [10]), which destroy the self-similar regime under
consideration and cause a non-stationary solidification
where the rate is not inversely proportional to the square
root of time. Nevertheless, the present study shows a pos-
sibility of the formation of deep cells and cracks due to
the effect of constitutional supercooling although other
processes can be greater intensive than the latter. To
appreciate the significance of this phenomenon, it is re-
quired to study the dynamics of fully non-stationary
solidification where the rate is not inversely proportional
to the square root of time in advance.
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